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Klotho, the Key to Healthy Brain Aging?
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Abstract. Brain expression of klotho was first described with the initial discovery of the klotho gene. The prominent age-
regulating effects of klotho are attributed to regulation of ion homeostasis through klotho function in the kidney. However,
recent advances identified brain functions and cell populations, including adult hippocampal neural progenitors, which require
klotho. As well, both human correlational studies and mouse models of disease show that klotho is protective against multiple
neurological and psychological disorders. This review focuses on current knowledge as to how the klotho protein effects the
brain.
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KLOTHO, THE FORGOTTEN BRAIN
PROTEIN

The first publication reporting the discovery of
klotho (KL) focused on its profound effect regulating
lifespan. Deficiency of mouse KL shortened lifespan
to only ~8 weeks (1). KL overexpression causes a
~30% increase of lifespan, particularly with males
(2). While any number of genetic manipulations can
affect mouse lifespan, what was particularly pro-
found about the KL-deficient mouse was that short
lifespan was accompanied by an array of disorders
normally associated with human aging [1]. Between
5 and 8 weeks of age, KL-deficient mice appear to
prematurely age, losing muscle and fat mass, under-
going premature thymic involution, developing thin
skin, gait abnormalities, infertility, arteriosclerosis,
osteoporosis, and emphysema [1]. Many of these
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aging-like disorders result from hyperphosphatemia
[1] caused by kidney KL deficiency [3, 4]. KL func-
tions as the fibroblast growth factor 23 co-receptor
required for phosphate homeostasis [4] and thus, nor-
mal life and healthspan.

Although largely overlooked in the original KL-
deficient mouse characterization, KL is expressed in
the brain [1]. KL-deficiency does not recapitulate the
pathology of an obvious neurodegenerative disease
[1]. However, when learning and memory were tested
across KL-deficient mouse lifespan, stunningly rapid
onset of cognitive impairment is detected providing
the first clue to a functional role for KL expression
in the brain [5]. Young, 7 week old KL-deficient
mice show hippocampal-dependent memory task
impairment only a week after performing equally
to age-matched controls [5]. Whether impairment
worsens, spreads to modalities beyond the hippocam-
pus, precedes neurodegeneration or aging-like brain
pathology is unknown because KL-deficient mice die
from peripheral dysfunction shortly after cognitive
decline is measured. Moreover, without the ability
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to determine whether cognitive failure was a direct
effect of brain-specific KL-deficiency or a secondary
outcome of KL mediated cardiovascular or renal fail-
ure [6, 7], further understanding of KL’s role within
the brain was limited until recently. With new and
growing evidence that KL protein directly regulates
multiple brain cell types sufficient to alter brain func-
tion, the need to understand the brain-specific actions
and therapeutic potential of KL proteins continues to
grow.

KLOTHO ESSENTIALS

In mice, brain expression of KL protein begins in
utero [8], increases dramatically after birth and into
adulthood [9], and is downregulated with advancing
age [10-13]. As with the human protein [14], mouse
KL is detected as three distinct forms [15] (Fig. 1).
Transmembrane KL is a 130kDa, glycosylated, type
1, single pass protein with a very short intracellu-
lar domain [14-16], that is detected on the surface of
cells[17, 18]. Transmembrane KL protein is predom-
inantly generated by kidney [1]. Brain expression is
limited to choroid plexus and neurons [1, 9, 19, 20].
Expression in other cells may occur or be species spe-
cific [9]; however, antibody specificity concerns have
created significant consternation about the reliability
of reported localizations beyond neurons and choroid
plexus [21]. Transmembrane KL is shed from the
cell surface by ADAM10/17 metalloproteinases [22,
23] and may be further processed [22, 24]. Shed KL
circulates throughout the body through both serum
and cerebrospinal fluid (CSF) [16]. In vitro, shed-
ding of KL can be stimulated by insulin [22] or low
extracellular calcium [25] but the physiological con-
ditions that increase or decrease shedding are not well
understood. The known functions of transmembrane
or shed KL derive from peripheral investigations and
are well reviewed elsewhere [26-28]. Secreted KL
is generated by alternative splicing of KL exon 3 to
produce a 70 kDa protein [15]. Secreted KL tran-
scripts are reportedly expressed by the same organs
that generate transmembrane KL [14], but in mice,
only the brain is reported to make secreted KL pro-
tein [29]. Although most of our data about human KL
function focuses on the transmembrane protein and
its important renal role in ion homeostasis, secreted
KL was originally described to be the predominant
human RNA transcript [14] and is the major human
serum protein form [30]. Yet to date, secreted KL has
no known function.
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Fig. 1. Schematic depiction of KL protein forms. Transmembrane
KL is transcribed from five exons and localizes to the plasma
membrane. Transmembrane KL is shed from the cell surface by
ADAMI10/17 and circulates through serum and CSF. Alternative
splicing of exon three generates secreted KL protein.

THE KL-DEFICIENT BRAIN

Driven by the initial reports of KL expression
within the brain, most initial information about
the function of KL in the brain was derived
from study of the KL-deficient mouse brain. In
addition to brain RNA expression, the original KL-
deficiency paper revealed KL impacts on central
nervous system (CNS) function with Parkinsonian-
like gait abnormalities and decreased number of
Purkinje cells in the cerebellum, an essential region
for motor coordination [1]. Further investigations
found additional KL-deficient peripheral and CNS
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abnormalities. These included reduction of anterior
horn cells and compromised axonal transport [31,
32]. Likewise, when cognitive function was tested
across KL-deficient mouse lifespan, no abnormalities
were detected until 7 weeks of age when rapid onset
of cognitive impairment occurred [5]. At this time
point, KL-deficient brains showed increased oxida-
tive stress that, when ameliorated, rescued cognitive
dysfunction [5]. Finally, an extensive characteri-
zation of terminal 7 week old KL-deficient brain
structure using immunohistochemistry and electron
microscopy revealed evidence of increased gliosis
concomitant with stochastic neurodegeneration [33].
Morphological changes were validated biochemi-
cally through measures of altered protein expression
including upregulation of the pro-apoptotic marker
Bax [5, 33]. Although interesting, the magnitude
of these reported cellular and molecular changes
are small. Thus, after initial reports, much of
the field focused on uncovering the mechanisms
behind peripheral KL function where more promi-
nent phenotypes allowed dissection with greater
clarity.

HUMANS, KLOTHO, AND COGNITIVE
FUNCTION

Brain immune privilege systems are in place to
protect the brain from threats that could be caused by
free flow of material and cells from the body into the
brain. These create unique challenges for understand-
ing how KL acts in the brain and how peripheral KL
might act upon the brain. The concentration of CSF
KL is consistent with local production rather than
transport of serum KL protein, which is too large for
passive diffusion across the blood brain barrier [30].
However, CNS KL drainage in CSF could contribute
to serum KL levels and mediate KL regulated periph-
eral systems. Consistent with this idea, one of the two
original KL overexpressing mouse lines only overex-
pressed KL within the brain and such overexpression
was sufficient to extend lifespan equivalently to body-
wide overexpression [2]. As well, peripheral KL. may
modulate brain function indirectly through signaling
across the blood brain barrier [34].

With mouse studies continuing to suggest that KL
expression level correlates with both brain and body
health, interest in KL as a human biomarker have
provided intriguing correlations to human health and
disease. Human serum levels of circulating KL cor-
relate with psychological dysfunction from chronic

stress to bipolar disorder [35, 36]. Although CSF KL
decreased concomitant with increasing multiple scle-
rosis disease severity [37], serum KL was unaffected
[38]. Patients with temporal lobe epilepsy show less
hippocampal KL RNA expression [39]. Meanwhile,
when looking for a correlation with Alzheimer’s dis-
ease, older humans showed lower CSF KL, even less
was measured in patients with Alzheimer’s, and these
effects were greater in women [40]. Consistent with
this report, a prospective study found that humans
with higher plasma KL showed both higher cognitive
assessment scores measured by Mini-Mental State
Exam (MMSE) and less decline at follow up exams
[41]. Together these indicate that lower brain KL cor-
relates with CNS disease while higher brain KL with
CNS health.

Allowing human studies to move beyond corre-
lation of gross serum/CSF KL level and disease
state/severity, quite remarkably, two human poly-
morphic variants of KL correlate with cognitive
function. The G395A guanine to adenine polymor-
phism impacts KL promoter transcription factor
binding [42]. Humans under age 60 show no cog-
nitive effect of the polymorphism but those over 60
had a slight but significantly higher IQ and better
MMSE score [43]. When humans 90+ years of age
were examined, those with the G395A polymorphism
were less cognitively impaired and also had higher
MMSE scores [44]. Thus, KL transcriptional changes
could impact brain function.

An additional polymorphism likewise correlates
KL with brain health. More frequently examined,
the KL-VS polymorphism is a collection of six
single nucleotide polymorphisms, two of which
cause KL exon 2 amino acid substitutions (F352V
and C370S) [45]. KL-VS may cause increased KL
shedding; however, mechanistic studies have only
evaluated the effect of the amino acid changing
mutations [45, 46]. Longevity, cardiovascular health,
and cognitive ability across lifespan reveal KL-VS
heterozygote advantage [45, 47, 48]. Initially, KL-
VS heterozygotes show higher cognitive function
across lifespan [48-50] caused, at least in part,
by increased dorsolateral prefrontal cortical volume
[51]. However, further work using older cohorts
report either no such association [52] or even the
opposite, KL-VS occurring with increased dementia
in men [53] and worse schizophrenic symptomatol-
ogy [50]. These suggest that the positive effects of
KL on cognition may be restricted by time, sex,
or other age/disease-related factors yet to be fully
elucidated.



186 H.T. Vo et al. / Functions of Klotho in the Brain

WHAT DO WE KNOW ABOUT
KL-MEDIATED EFFECTS ON SPECIFIC
BRAIN REGIONS OR CELL
POPULATIONS?

Although global manipulation of KL expression
impacts cognitive function, how KL mediates these
effects is unclear. Thus, recent work has focused
on specific brain regions to help dissect KL. mech-
anism(s) of action.

CEREBELLUM AND CHOROID PLEXUS

KL is expressed by both choroid plexus epithe-
lial cells and Purkinje neurons of the cerebellum [9,
19, 20]. Little is known about the function of cere-
bellar KL except that KL-deficient mice have fewer
Purkinje neurons and display Parkinsonian-like gait
abnormalities [1].

While the brain’s ventricles are thought of as
open channels of CSF, they contain a very unique,
diaphanous tissue, the choroid plexus. Choroid
plexus is physically the blood brain barrier and
is the major production site of CSF [54]. Gene
expression profiling reveals that the choroid plexus
more closely resembles the kidney than either the
cortex or the hippocampus [55]. This raises the pos-
sibility that KL protein could function in choroid
plexus as it does in the kidney, to regulate ion
homeostasis. Choroid plexus KL protein is local-
ized throughout the cell body and low extracellular
calcium concentrations increase choroid plexus KL
shedding [25]. In choroid plexus, KL interacts with
the Nat/K*-ATPase, regulating calcium homeosta-
sis through altered membrane abundance of this
critical transporter [25]. Although KL-deficient mice
have decreased CSF calcium concentrations, they do
not display any overt CSF dysfunction like altered
osmotic pressure [25]. While this study suggests that
KL could be important for the choroid plexus’ ability
to maintain ion homeostasis, both choroid plexus and
cerebellum are understudied KL brain regions.

OLIGODENDROCYTES AND MYELIN

The brain’s white matter tracts, containing neu-
ronal axons, their associated myelin sheaths, and
myelin maintaining oligodendrocytes, are particu-
larly prominent sites for downregulation of KL with
age [12, 13]. The volume of the major hippocampal
output white matter tract, the fimbria, is dramatically

decreased over KL-deficient mouse lifespan and
this correlates with fewer oligodendrocytes [56-58].
Axon analysis across CNS white matter tracts of
KL-deficient mice show impaired myelination [57].
In vitro experiments reveal a potential role for shed
KL in oligodendrocyte differentiation and maturation
[57, 58].

Autoimmune responses to myelin are a patho-
logical feature of multiple sclerosis. In a model
of multiple sclerosis, KL overexpressing mice have
greater spontaneous central re-myelination [59].
Additionally, KL upregulation occurs after rats are
exposed in utero to multiple sclerosis inducing cupri-
zone [60]. Together these data suggest that KL is
important for oligodendrocyte function and myelin
sheath maintenance of the normal brain and may be
protective under conditions of myelin-related disease.
Infact, KL is also neuroprotective, as in vitro data sug-
gest that it is able to increase resistance to oxidative
stress by multiple mechanisms [61, 62].

HIPPOCAMPUS

Although the brain is an integrated unit where a
single region never acts in isolation, the hippocam-
pus is a critical nucleus for the brain’s learning and
memory function. The hippocampus is also inten-
sively studied for its sensitivity to dysfunction caused
by normal aging and neurodegenerative diseases. As
such, the hippocampus continues to be an important
region to understand KL protein function and deter-
mine its potential to enhance cognition and memory
function.

Early characterization of the KL-deficient hip-
pocampus showed evidence of increased oxidative
stress, increased markers of apoptosis and increased
stochastic neuron death [5, 33]. Importantly, perfor-
mance using hippocampal-dependent learning and
memory tasks showed rapid onset of cognitive
impairment between the 6th and 7th week of life
[5]. KL-deficient mice die between 8 and 12 weeks
of age such that 7 week old KL-deficient mice are
in terminal decline. With the inability to clarify
whether peripheral disease confounds these results,
evaluation of the KL overexpressing brain provided
critical evidence supporting the brain-specific role
of KL. In addition to confirming that KL. overex-
pression extends lifespan [49], recent work measured
enhanced hippocampal-dependent task performance
that protects from age-related cognitive decline
[56, 63]. As well, KL overexpression in a model
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of Alzheimer’s disease both extends lifespan and
enhances cognition [63]. Together, global models of
KL expression indicate that KL protein affects hip-
pocampal function; however, neither the KL form nor
the cellular/molecular mechanisms of KL action are
well elucidated. Further complexity is added by the
recent discovery that the brain is the only murine
site where secreted KL is detected, with RNA and
protein expression found throughout neuronal rich
regions of the brain [29]. Increased ventricular cir-
culation by viral vector expression of secreted KL
is sufficient to enhance hippocampal-dependent cog-
nitive function [64]. Together these results establish
the importance of KL for normal cognitive function,
although mechanistic interrogation of all forms of KL
remains to be accomplished. Our recent studies have
begun to define distinct neuronal processes that KL
regulates.

ADULT HIPPOCAMPAL NEUROGENESIS,
AGING, AND KLOTHO

Generation of new adult neurons takes place
through a series of transcriptional and morphologi-
cal changes as radial glia-like stem cells commit to a
neuronal fate and then mature and integrate into the
circuit [65, 66]. The hippocampal dentate gyrus is one
of a few brain regions where neurogenesis continues
throughout adulthood; however, neurogenic decline
may be the first brain “aging” phenotype. Following
postnatal development of the mammalian brain, neu-
rogenesis rapidly decreases during early adulthood,
falling to a low, steady state that continues through
old age [67, 68]. In rodents, the number of actively
dividing progenitors decreases by 90% between 3-
and 20-months [69-72]. Neuronal commitment and
differentiation are also altered with age. Four weeks
after labeling dividing progenitors, middle age brains
show 40% fewer cells expressing neuronal protein
markers compared to young mice [73, 74], suggest-
ing that either the fraction of cells committed to a
neuronal fate decreases with age or that the entire
process is much slower in aged brain.

While elucidation of mechanisms underlying age-
related loss of neurogenesis are ongoing, evidence
proposes that age-related neurogenic decline could
be reversible. Heterochronic parabiosis or young
serum transfusions restore aged mouse progenitor
proliferation and survival [75-78]. These suggest
that rather than an intrinsic change in aged pro-
genitor cells, age-related neurogenic decline is a

response to a changing niche microenvironment.
Indeed, individual extracellular growth factors, many
of which are age-downregulated, can improve aspects
of adult neurogenesis [79-86]. However, rescue of
age-related neurogenic decline will not be as simple
as increasing the concentration of age-downregulated
growth factors alone, as maintenance of the pro-
genitor pool throughout life is dependent upon an
appropriate balance between factors that promote
progenitor proliferation and quiescence. For example
growth factors FGF-2 and IGF-1 promote prolifera-
tion and production of new neurons, but hyperactive
signaling prematurely depletes the progenitor pool
[87-90]. Beyond progenitor maintenance, survival
of new neurons is also modulated by growth fac-
tors. Hippocampal granule neuron or progenitor cell
derived bone morphogenic proteins both promote
progenitor quiescence and stimulate differentiation
[88, 91] while brain-derived neurotrophic factor pro-
motes both proliferation and survival of new neurons
[92-95]. Thus, a network of extracellular factors
promote neuron production while at the same time
maintaining the progenitor pool [94, 95].

Neurogenic changes within the hippocampus can
affect learning and memory [76, 96-99], raising the
possibility that the effect of KL on hippocampal-
dependent cognition [49, 63, 100] could be caused,
at least in part, by a regulatory role for KL in adult
neurogenesis [56]. We recently used KL-deficient and
KL overexpressing mice to test this idea. Whereas KL
overexpression enhances neurogenesis into at least
early adulthood, KL-deficient brains undergo rapid
collapse of the hippocampal neurogenic niche [56].
Both models provide evidence that KL affects prolif-
eration and maturation of neural progenitors (Fig. 2).
Of note, KL-deficient mouse progenitor proliferation
is reduced as early as 3 weeks of age [56], prior to
body-wide deterioration [1]. Thus, while some argue
KL brain phenotypes are a secondary effect of toxic
hyperphosphatemia [1], this neurogenic change prior
to overt peripheral dysfunction supports a direct role
of brain KL. Furthermore, reduced proliferation of
the KL-deficient neurogenic niche is recapitulated in
vitro using KL-deficient neurospheres. Culture media
supplemented with recombinant shed KL, caused a
complete rescue of proliferation [56]. As progeni-
tors do not express KL [56], this identifies a non-cell
autonomous function for shed KL on the earliest neu-
ral progenitors.

BrdU labeling of KL-deficient dentate progenitors
shows that newly committed neurons fail to fully
mature [56]. KL-deficient mice exhibit not only a
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Fig. 2. KL expression regulates dentate adult neurogenesis. Adult
neurogenesis occurs as radial glial-like stem cells progress through
a series of protein expression and morphological changes to
advance from transient amplifying cells (TAP), to committed
neuroblasts, to immature neurons and finally fully mature neu-
rons. KL-deficient brains show premature neurogenic aging with
decreased proliferation, decreased number of stem cells and imma-
ture neurons, and delayed maturation of immature neurons. KL
overexpression increases proliferation and enhances maturation
causing a greater number of highly arborized immature neurons
to persist long after normal age-related downregulation of adult
neurogenesis.

reduced number of immature neurons, but also poor
dendritic arborization and aberrant transcriptional
changes indicative of stalled maturation [56]. Con-
versely, KL overexpressing hippocampi hold more
immature neurons and these have enhanced dendritic
arborization [56]. Consistent with cellular data, KL
overexpression shows increased expression of imma-
ture neuron glutamate receptor subunit, GluN2B [49]
which could either indicate that the receptor sub-
unit composition of mature neurons is different [101,
102] and/or that there are more GluN2B expressing
immature neurons [103, 104]. While the tempo-
ral expression of KL during neuronal maturation is
unknown, KL is expressed by mature neurons includ-
ing granule neurons [9, 18, 105]. This suggests that
mature neuronal function requires KL. While hip-
pocampus hosts all three forms of KL protein and
evidence exists for shed KL acting on progenitors,
further work is required to understand which forms
and by what mechanism do the KL proteins regulate
neuronal maturation.

KLOTHO AND HIPPOCAMPAL
SYNAPTIC PLASTICITY

Across labs and memory protocols, KL-deficient
mice exhibit cognitive deficits and KL overexpress-
ing mice exhibit enhanced cognition with learning
and memory tasks that require the hippocampus [5,
49, 56]. KL-deficient brain lysates show reduced
expression of the presynaptic marker synaptophysin
and total synapse number [19, 33]. Also, KL is
expressed by hippocampal neurons [9, 18, 19]
and recent subcellular fractionation of total hip-
pocampal lysates indicate that transmembrane KL
localizes to membrane and synaptic fractions [18].
Localization and functional indicators suggest cell-
autonomous function of KL could directly affect
synaptic plasticity. But, it is also important to
note that with CSF circulating, shed KL [16] and
secreted KL are detected across the brain parenchyma
[29], thus non-cell autonomous regulation of plas-
ticity could occur. To begin investigation of KL
effects on synaptic plasticity, KL-deficient hippocam-
pal Schaffer collateral projections were measured
using 7 week old, terminal mice. Decreased long-
term potentiation was only detected with a very
light stimulation protocol [18, 106]. However, KL-
deficient mice measured before the onset of cognitive
impairment (5 weeks) show enhanced paired-pulse
facilitation and long-term potentiation, indicators of
pre- and post-synaptic function, respectively. These
changes occur with no detectable change in base-
line synaptic transmission, strongly suggesting that
KL specifically regulates plasticity [18]. Addition-
ally, we found that acute application of recombinant
shed KL to slice culture buffer had no effect on
paired-pulse facilitation suggesting that shed KL,
at least acutely, does not impact plasticity [18].
While enhanced paired-pulse facilitation, long-term
potentiation, and impaired memory are a very rare
phenotypic combination, examples exist that may
implicate dysfunction of protein interactions at the
synapse [107].

Synaptic plasticity data from KL overexpressing
mice are conflicting. We tested KL overexpressing
Schaffer collateral synapses at 2 or 6 months to mea-
sure synaptic plasticity before and after the onset
of cognitive enhancement. Only older, 6 month old
KL overexpressing mice show decreased long-term
potentiation with no effect on paired-pulse facili-
tation [18]. However, other reports show enhanced
long-term potentiation at both the Schaffer collat-
eral [34] and mossy fiber synapses [49] that is
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blocked by inhibition of the GluN2B glutamate
receptor subunit [49]. This result is consistent with
GluN2B overexpressing mice that exhibit enhanced
synaptic plasticity and memory behaviors [102].
Interlab electrophysiological discrepancies can result
from different stimulation and/or recording proto-
cols. Likewise, these studies used different ages of
mice. Thus, clarity about the role of KL in synaptic
plasticity will require detailed mechanistic interroga-
tion. This need is further reinforced by fascinating
data that show elevated long-term potentiation at
Schaffer collateral synapses is possible simply by
injecting recombinant shed KL into the periphery
[34]. As KL does not cross the blood brain barrier
[34], these data raise the intriguing possibility that
peripheral signaling could impact synaptic plastic-
ity and further emphasize the need for molecular
level detail of the function of all forms of KL,
particularly as they relate to regulation of synaptic
plasticity.

DOPAMINERGIC NEURONS

While hippocampal studies point to a role of KL
in regulation of oxidative stress [5], the ability of
KL to decrease oxidative stress and thus provide
neuroprotection is also reported for dopaminergic
neurons of the substantia nigra pars compacta and
ventral tegmental area [108]. Dopaminergic neu-
rons are particularly sensitive to aging processes
and are the critical cells lost during Parkinson’s
disease development [109]. With age, KL-deficient
mice show selective loss of dopaminergic neurons
and their neurotransmitter, dopamine, a phenotype
that can be rescued by reducing Vitamin D levels
[108]. Lysates from either KL-deficient or KL over-
expressing brains reveal reciprocal effects on p38
MAPK signal activation, which increases in response
to oxidative stress [110]. Increased p38 activation is
the result of free apoptosis signal-regulating kinase
1 which is inhibited when bound in a complex with
thioredoxin and 14-3-3¢. KL-deficiency favors the
dissociation of the inhibitory complex while over-
expression of KL favors complex formation [110,
111]. These studies identify a previously unidentified
KL-modulated stress pathway with the potential to
impact neurodegeneration. In vivo, genetic and mul-
tiple chemical models of Parkinson’s disease show
protection from dopaminergic neuron loss, motor,
and cognitive symptoms when KL is increased [108,
110, 112].

KLOTHO AND PITUITARY GLAND

Although the CNS component of the
hypothalamic-pituitary-adrenal (HPA) axis does not
express KL [113], KL-deficient mice show HPA
axis dysfunction causing a wide range of peripheral
problems beyond the scope of this review. However,
KL mRNA is detected in the pituitary gland and
KL-deficient mouse pituitary cells responsible for
hormone secretion are abnormally small [1]. Grossly
HPA dysfunction manifests as growth retardation,
gonadal atrophy, and infertility [1]. Atrophy and
infertility is not caused by KL-deficiency in sex
organs [113], rather the KL-deficient pituitary
produces insufficient levels of the critical hormones
required for sexual maturity (ex. growth hormone,
luteinizing hormone, and follicle-stimulating hor-
mone) [1, 113]. This is likely a function of shed KL
as growth hormone secretion occurs in response to
shed KL [114].

TOWARD THERAPEUTIC TARGETING
OF KL

KL is a pleotropic brain protein (Fig. 3). Choroid
plexus expresses the highest KL levels and is thus
the likely greatest source of extracellular KL pro-
tein [9, 16, 19, 20]. Choroid plexus may require KL
for homeostatic mechanisms [25]. Although under-
studied, cerebellar expression likely accounts for
KL-deficient mouse motor deficits [1]. KL protects
oligodendrocytes and neurons from the deadly effects
of oxidative stress and also functions to promote
proper maturation of both cell types in adult brain
[5, 33, 56-59, 61]. KL regulates hippocampal func-
tions from cognition [5, 34, 49, 57], to neurogenesis
[56], to synaptic plasticity [18, 34, 49, 106] and thus
holds potential to function as a novel therapeutic tar-
get to protect this sensitive brain region from both
the deleterious effects of normal aging and the rav-
ages of neurodegenerative diseases like Alzheimer’s
disease [63].

Work is ongoing to identify small molecule modu-
lators of KL [115], use recombinant KL protein [34],
and gene therapeutic approaches [64] as novel thera-
pies to support brain health. While multiple models of
KL overexpression have so far provided strong indi-
cations that KL is a brain-wide protective protein that
could enhance brain health with age and positively
impact an array of neurodegenerative diseases [35,
56, 63, 64], there is still much that must be understood
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Fig. 3. Summary of KL implicated brain regions. KL proteins act throughout neuronal and non-neuronal regions of the brain.

about KL before confidence in its therapeutic target-
ing is justified. First, replication of critical data by
independent labs is required especially when KL sup-
plementation appears to have profound and always
positive effects. Second, the majority of mechanistic
studies involving KL use single time points and/or
doses to assess and interpret results. Human studies
warn that KL may have a narrow time [52] and con-
centration window of therapeutic efficacy before it
causes disease on its own [116]. Even the addition
of one additional time point can dramatically impact
data interpretation as was the case in our recent work
showing that KL overexpression doesn’t simply ele-
vate memory, it prevents decline [56]. Additionally,
studies conducted to date have used almost exclu-
sively mice in the first half of lifespan. Knowing that
the aged brain is fundamentally a different environ-
ment, it is critical that data show the normal role of KL
in aged brain and at ages when therapeutic modeling
is most relevant.

Whether warranted or not, KL's seeming ability
to improve everything it touches in the brain, elic-
its skepticism that can only be eliminated with more,
high quality, rigorously controlled mechanistic stud-
ies. These will be enabled by development of more
refined genetic models as well as development of
tools to allow precise mechanistic studies of spe-
cific KL forms and brain-specific KL mechanisms of
action. Untangling the direct and indirect functions

of KL within the brain will allow targeted thera-
peutic investment in specific disease modalities. In
the meantime, an array of questions and brain areas
remain to be explored to understand the basic biol-
ogy of the KL protein and how its various forms act
to support healthy life and healthy aging.
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